Protection against short-circuits

Figure 1 shows typical let-through or I2t values of overcurrent circuit-breakers. In the case of S201-B16 miniature circuit-breaker, this causes the letthrough energy to be limited to approx. 20,000 A²s if a prospective short-circuit current i_k = 6 kA occurs. This value is far less than 29,700 A2, meaning PVC-insulated Cu cables with a crosssection of 1.5 mm² can be protected in the event of a short-circuit.

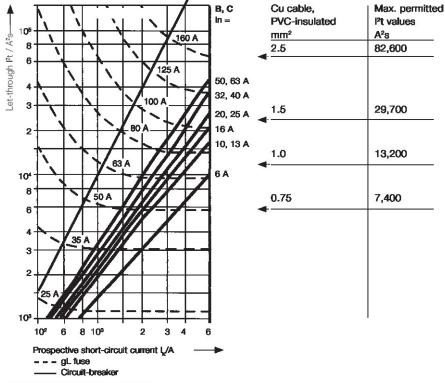


Fig. 1 Let.-through energy I2t

Overload protection in accordance with IEC 60364-4-43

For protection against overload, the protective device must be selected based on the current carrying capacity I, of the cable:

 $||_{b} \leq ||_{a} \leq ||_{z}$ $l_{2} \le 1.45 \times l_{1}$ (2) I_b = Design current of a circuit

= Rated current of the protective device

I = Current carrying capacity of the cable in accordance with IEC/HD 60364-5-52

I_a = Current ensuring effective operation in the conventional time of the protective device

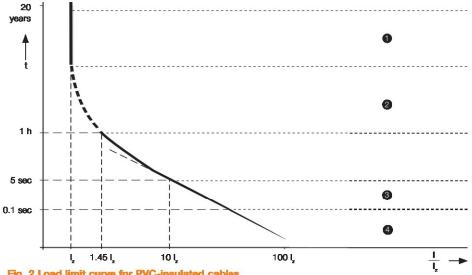


Fig. 2 Load limit curve for PVC-insulated cables

- 1 Area of complete heat dissipation with continuous current l, Permissible operating temperature 70 °C (PVC)
- 2 Area of limited heat dissipation in the event of overload I, ≤ 1.45 x I,
- 3 Area without heat dissipation for a maximum short circuit duration of 5s I2t = constant, permissible short circuit temperature 160 °C
- With a disconnection time of < 0.1s, the Pt of</p> the miniature circuit-breaker must be less than k2 · S2 of the cable
 - (k = material value in accordance with IEC /HD 60364-4-43;
 - S = cable cross section in mm²)